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Abstract

In this research, we derived starting with the first principles, the
dynamical friction force on a star moving through a star field/galaxy.
We used this derivation to calculate the orbital decay of a heavy Black
Hole (BH) or a massive star. We found that the typical time for a
BH to spiral into the galactic center, the decay time, is comparable to
the age of the universe. Our estimation showed that this decay time
scales with the mass of the BH as

t ∼ 1018M�/M years,

where M is the mass of the BH and M� = 2 × 1030 kg is the solar
mass.

1 Introduction

Dynamical friction is a force that slows down objects moving in space. It
reduces the kinetic energy of interacting bodies as a result of gravitational
attraction. This reduction in kinetic energy can be observed from small
scattering processes, such as a comet traveling past a star, all the way up
to galactic mergers. We derived the formula for dynamical friction in terms
of the loss of velocity of a star passing through a star field. Afterwards, we
determined the density profile of a galaxy (based on the rotational curves),
and then using this density profile, estimated the orbital decay time of a
heavy BH around a supermassive galactic center (a supermassive black hole
or SMBH).
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Figure 1: Scattering of mass m by a heavy target M .

2 Theory Outline

2.1 The Kepler Problem

We begin by considering the Kepler Problem; the scattering process of two
point-like masses due to mutual gravitational interaction. This process can
be described by the change in relative velocity of the two masses m and M
(or just the change in velocity of m if M � m). If we exclude external
influences, the center-of-mass velocity of the system is unchanged.

∆v‖ = −v + v cosφ,
∆v⊥ = v sinφ.

(1)

Here ~v = ~v1 − ~v2 is relative velocity, ∆~v is the change in relative velocity,
and φ is the angle of deflection, see Fig. 1. Assuming a uniform distribution
of stars in the field, changes in the perpendicular velocity component cancel
out, see Fig. 2. From now on only the parallel velocity component is of
interest. The scattering angle φ relates to the direction of closest approach
between the stars, with the corresponding angle θ0 shown in Fig. 1. Now,
with the help of

φ = 2θ0 − π, (2)

we are able to define the change in velocity in terms of θ0 as

∆v‖ = −2v cos2 θ0. (3)

The solution of the Kepler Problem is well known–it relates the distance
between two colliding bodies r with the polar angle θ as

r =
p

1 + e cos θ
. (4)
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Figure 2: When moving through a uniform field, the parallel components of
velocity are summed, and the perpendicular components are canceled.

Here p is the conic parameter and e is the eccentricity. Using the solution of
the Kepler Problem (4) we can define angle θ0 and the corresponding change
in velocity as

cos θ0 = −1

e
, when r →∞ (5)

and

∆v‖ = −2v
1

e2
= −2v

1

1 + v2L2

k2

. (6)

For eccentricity we used the known expression

e =

√
1 +

v2L2

k2
, (7)

where k = Gm1m2 is the strength of the gravitational interaction, L = µρv
is the relative angular momentum (with the impact parameter labeled as ρ,
see Fig. 1), and µ = m1m2/(m1 +m2) is the reduced mass of the system.

The solution of the Kepler Problem allowed us to derive Eq.(6) without
serious effort. From here, we could find the individual velocities of the scat-
tering stars. This can be done using the following transformation (Fig. 3
may help in visualizing it)

~v1 = ~Vcom +
m2

m1 +m2

~v, (8)

~v2 = ~Vcom −
m1

m1 +m2

~v, (9)
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Figure 3: Center-of-mass and relative velocities.

where ~v1 is the velocity of m1, ~v2 is the velocity of m2, the center-of-mass
velocity ~Vcom does not change during the scattering, and ~v is the relative
velocity.

Let’s assign m1 to the passing star and m2 to the target. The change in
~v1 can be related to the change in relative velocity ~v. Using Eqs.(6) and (8)
we get

∆v1‖ = −2v

(
m2

m1 +m2

)(
1

1 + ρ2v4

G2(m1+m2)2

)
, (10)

where v is the relative velocity, and ρ is the impact parameter.

2.2 Dynamical Friction Force

We can integrate over the stars in the field/galaxy assuming a distribution
of masses m2 (targets) located at different positions ~r, moving with different
velocities ~v2. The number of targets can be expressed through the field
concentration and corresponding elementary volumes

dN = n(~r,~v2)d
3rd3v2, (11)

where n(~r,~v2) is the generalized concentration of stars of mass m2 in the
field/galaxy at point ~r moving with velocity ~v2. Note that ~r is the position
of m2 relative to the passing star m1.

4



The deceleration of the passing star due to interactions with dN targets
can be calculated as

∆V‖
∆t

=
∆v1‖
∆t

dN = n(~r,~v2)∆v1‖2πρdρ
∆z

∆t
d3v2, (12)

where we assumed cylindrical symmetry and used the cylindrical coordinates
for the volume: d3r = 2πρdρdz. With some approximation, ∆z/∆t can be
replaced with the relative velocity parallel component v‖.

The acceleration (12) can be integrated over the impact parameter ρ,
which can be done analytically if we assume that the concentration n is more-
or-less constant near the position of the passing star: n(~r,~v2) ≈ n(0, ~v2) ≡
n0(~v2), but goes to zero for large impact parameters ρ > ρmax. This could
be, for example, the size of the galaxy. The integration over ρ gives us

∆V‖
∆t

= −2vv‖n0(~v2)d
3v2

(
m2

m1 +m2

)∫
2πρdρ

1 + ρ2v4

G2(m1+m2)2

, (13)

or, finally, with the logarithmic accuracy we get

∆V‖
∆t

= −4πG2(m1 +m2)m2 lnλ
v‖
v3
n0(~v2)d

3v2, (14)

where v‖ = ∆z/∆t is the relative velocity in the direction of motion of the
passing star (z is the relative coordinate), the cut-off parameter Λ is defined
by the maximum impact parameter ρmax after which the star field disappears:
Λ ∼ ρmaxv

2
c/Gm, and vc is the typical speed.

Now, if we multiply acceleration (14) by the mass of the passing star m1

we get the dynamical friction force on m1:

~Fdf = −4πG2(m1 +m2)m1m2 lnλ

∫
n0(~v2)

~v1 − ~v2
|~v1 − ~v2|3

d3v2, (15)

where we have substituted the relative velocity with: ~v = ~v1 − ~v2.
For further calculation we need to assume a certain distribution of stars

in the field over velocity, n0(~v2). For example, one could pick a Maxwell
distribution. In our research, it would be sufficient to estimate the dynamical
friction force (15) for a very heavy passing star: m1 � m2. For an estimation,
the concentration n0 can be replaced with the density of the target stars

ρ ∼ m2

∫
n0d

3v2, (16)
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where ρ is the star density at the location of the passing star (so ρ = ρ(r) is
a function of the passing star position). This gives us a rough estimation of
the force;

Fdf ∼ 4πG2m2
1ρ(r)

ln Λ

v2c
, (17)

where G is the universal gravitational constant, m1 is the mass of the passing
star, ρ is the density of the field, vc is the typical speed, and Λ is the cut-off
parameter. For a more accurate integration of (15) the Gauss theorem can
be applied. We can assume spherical symmetry for the velocity distribution
n0(~v2). In this case, the velocities in the star field exceeding that of the
spiraling body do not contribute to the dynamical friction force, something
of particular interest.

2.3 Orbital Decay of a Heavy BH

We can determine the density profile formula, ρ = ρ(r) needed to calculate
the dynamical friction force (17). In the case of spherical symmetry, the
centripetal acceleration of a star moving around a galactic center is defined
by the total mass enclosed by the star’s orbit (another sample application of
the Gauss Theorem!),

v2

r
= G

∫ r
ρ(x)4πx2dx

r2
. (18)

Taking the orbital speed v as constant (due to the flattening of the rotational
curves) we get

1

r

∫ r

ρ(x)x2dx = constant. (19)

It should be noted that our estimate will not take into account that rotational
curves are not flat all the way to the center, but still it gives a sufficient
enough estimation for the galactic density. We can see that the corresponding
density profile decreases with distance as ∼ 1/r2, stated more accurately,

ρ(r) =
v2c

4πGr2
. (20)

We can now use Eq.(20) and the dynamical friction force (17) for a heavy
passing star of mass M (in our case a heavy BH) moving though a field of
stars. The dynamical friction force can be approximated as

Fdf ∼ 4πG2M2ρ(r)
ln Λ

v2c
. (21)
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Substituting Eq.(20) into Eq.(21) we can get the following final expression
for the dynamical friction force

Fdf ∼ ln Λ
GM2

r2
. (22)

The orbital decay time of a heavy BH can de described in terms of orbital ra-
dius, orbital speed, the mass of the BH, and the cut-off parameter Λ discussed
above. We can estimate the decay time as the ratio of the star’s angular mo-
mentum, L, to the torque, τ , exerted on the star by the dynamical friction
force:

t ∼ L

τ
=
rMvc
rFdf

=
Mvc
Fdf

. (23)

Finally, the decay time simplifies to

t ∼ vcr
2

GM ln Λ
. (24)

For an estimation, we chose a BH equivalent to 108 solar masses (M =
108M� = 2 × 1038kg), with an orbital speed vc = 200 km/s = 2 × 105m/s,
an orbital radius of r ∼ 10 kpc = 3.1 × 1020m, and a cut-off parameter of
ln Λ ∼ 7. The universal gravitational constant G = 6.67 × 10−11Nm2/kg2.
Using these values we get the following estimation for the decay time

t ∼ 2× 105 · (3.1× 1020)2

6.67× 10−11 · 2× 1038 · 7
≈ 2× 1017 s = 6.5× 109 yr = 6.5Gyr. (25)

At around 7 billion years, our estimate is comparable to the life-time of the
universe. The corresponding mass dependence may looks like

t ∼ 1018M�
M

years. (26)

3 Conclusion

In this work we derived from the initial principles, the dynamical friction
formula that describes an effective “friction” force acting on a star moving
through a uniform star field. To derive the dynamical friction force we used
the exact solution of the Kepler Problem, which allowed us to describe the
scattering process of two arbitrary stars. To model the field of stars we
introduced a reasonable distribution of stars in the field/galaxy n(~r,~v2).
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Analyzing dynamical friction provided a means to determine the lifetime
of a star’s orbit around a galactic center. The lifetime of a heavy black
hole orbiting a galactic center was calculated by examining the amount of
frictional force applied by the star field. We found that the typical decay
time of a heavy BH (M = 108M�) due to the dynamical friction force is
about

t ∼ 7 billion years, (27)

which is comparable to the age of our universe. A long decay time like this
could suggest that heavy BHs do not spiral into the center, or do so over
very long periods. Lighter stars and BHs will have an even longer decay
time. Other exciting applications of dynamical friction involve simulating
merging galaxies (such as Andromeda and the Milky Way), and examining
how it plays a role in dark matter interactions.
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