Mundell-Fleming Model of a Small Open Economy

Dudley Cooke

Trinity College Dublin
Mankiw and Taylor, Chapter 12.

Also see Copeland, Chapters 4 and 6.
Plan

- Open Economy IS and LM equations
- Balance of Payments and Capital Mobility
- Fiscal/monetary policy under Fixed and Floating Exchange Rates.
Super Quick Historical Background

- **Pre-War Period** covers 1880-1914 (using the Classic Gold Standard) where countries pegged their exchange rate to the value of gold.

- **Inter-War Period** is roughly until 1931. Countries used US Dollars, Pounds Sterling or Gold to peg their exchange rate - this stopped when the UK departed from gold in the face of large capital outflows.

- **Bretton Woods Period** covers 1946-1971. Countries pegged their exchange rate to the US Dollar. This stopped when Nixon suspended convertibility.

- **Floating Period** - basically until now. However, this does not account for the launch of the Euro in 1999 and other current issues in Asia.
The Baseline Open Economy Model

- We study an economy similar to that used for the closed economy.
- IS and LM conditions as before, but also incorporate:
 1. international trade/current account
 2. capital account (balance of payments) and capital controls
 3. Real (and nominal) exchange rate
We now want to incorporate the current account/real exchange rate response into the IS. The national income identity is:

\[Y = C(Y - T) + I^p(r) + G + (X - M) \]

- \(C \) denotes the Keynesian consumption function and \(I \) is investment demand.
- The IS curve still gives combinations of real output and the interest rate such that planned and actual expenditures are equal.
- However, we now know it is possible to borrow from or lend to the rest of the world via the current account.
Current Account and Exchange Rate

- We assume that the current account is determined independently of the capital account.
- PPP does not hold, even in the long-run, and the size of the current account surplus depends positively on the (real) exchange rate:

\[CA = CA(Q, ...) \]

- If \(Q \) rises, our goods become more competitive abroad. Foreigners switch from buying their goods to our goods. This provides a boost to income. The process is called expenditure switching. It is a key mechanism in the open economy.
We have assumed that we cannot be on the 'Q₀ = 1 line'. Expenditure switching requires the fixed price assumption as $Q = SP^*/P$.
Diagram: The Exchange Rate and Net Exports

\[\frac{1}{S}, \frac{1}{\text{Exchange Rate}} \]

\[X - M, \text{Net Exports} \]

\[NX_0 = X_0 - M_0 \]

Note: Mankiw uses \(S \) on the vertical axis. That is because \(S = S/£ \). We use the other definition, i.e. \(S = £/S \).
• Diagram 1: We implicitly assume that we cannot be on the “\(Q = 1 \) line”; i.e. PPP does not hold. In reality, this could happen for any number of reasons. Here we will assume this because the ISLM-cum-Mundell-Fleming model is a short-run model.

• Diagram 2: In Mankiw and Taylor, “\(S \)” appears on the vertical axis. Note that we have defined the exchange rate differently. That is, because the exchange rate is a relative price, we have two possible ways to write it (sometimes be very confusing).

• Remember: an increase in \(S \) is a: weaker domestic currency/depreciation in the domestic currency
We also assume that the CA depends on GDP (income levels). The more income the more imports we buy:

\[CA = CA(Y, ...) \]

Recall that \(P \) is fixed and note \(P^* \) is exogenous from the point of view of the domestic economy.

We re-write the overall expression for the current account in the following way:

\[CA(Q, Y) = CA(S, Y) \]

Again: due to sticky prices the real and nominal exchange rates move in the same direction.
The IS and Exchange Rate

- Open econ IS looks like closed econ IS, but is,

\[Y = C(Y - T) + I^p(r) + G + CA \left(S, Y \right). \]

Note: The open economy IS looks like the closed economy IS - it is not the same.

Diagram: The IS and the Exchange Rate

Diagram: The IS and the Exchange Rate

\(i \), Interest Rate

\(Y \), Output

\(Y_0 \)

\(i_0 \)

\(i_1 \)

\(IS(S_0) \)

\(IS(S_1) \)
The closed and open economy LM curve are the same.

\[LM \equiv \frac{M^s}{P} = \frac{M^d}{P} = L(Y, i) \]

- \(i \), Interest Rate
- \(Y \), Output
- \(Y_0 \)
- \(i_0 \)
Although the LM is unchanged, the exchange rate does matter for the asset market because there are **domestic and foreign bonds**.

The exchange rate determines equilibrium in the foreign exchange market; i.e. the domestic and foreign bond markets.

If we assume that expectations are static, **under perfect capital mobility**:

\[i = i^* \]

Where \(i^* \) is exogenous for the small open economy, e.g. \(i^* \) is the US interest rate.
If there is imperfect capital mobility UIP may fail to hold:

\[i \neq i^* \]

Flows of capital depend on interest rate differentials between countries:

\[KA = KA (i - i^*) ; \Delta KA / \Delta (i - i^*) > 0 \]

If \(i > i^* \) there is a capital inflow, i.e. foreign residents want to buy home assets.

If \(i < i^* \) there is a capital outflow.
Balance of Payments

- The balance of payments condition is:

\[CA(Q, Y) + KA(i - i^*) - \Delta R = BP \]

- Here, we denote foreign exchange reserves, \(R \).

- Equilibrium obtains when the flow of capital finances the current account deficit or absorbs the surplus, i.e. \(BP = 0 \).

- As income rises, given \(Q \), the \(CA \) deteriorates as import demand grows. To preserve \(BP = 0 \), the \(KA \) must improve.

- This net capital inflow can only be achieved by an increase in the domestic interest rate.

\(^1 \) We don't need to worry about this until we consider a fixed exchange rate so, for now, \(R = 0 \), and \(CA = -KA \).
When there is perfect capital mobility the BP curve is horizontal in \((i, Y)\)-space - it does not depend on the exchange rate and is given by, \(i = i^*\).
‘Internal equilibrium’ occurs when $IS = LM$, i.e. the markets for goods and for money are in equilibrium.

‘External equilibrium’ occurs when $BP = 0$, i.e. the flow of capital is sufficient to finance $CA \leq 0$.

We would also expect an interest rate differential to produce only a finite change in capital flows - i.e. there is some capital immobility.

Perfect capital markets is a benchmark situation.
The more restricted are capital flows, the larger the rise in the interest rate, for a given change in output. The BP is then steeper in \((i, Y)\)-space.

Diagram: IS-LM-BP Equilibrium

- **BP - no capital flows**
- **LM**
- **BP - limited mobility**
- **BP - full mobility**
- **IS**

i, Interest Rate

Y, Output
So far we have been general. We can also adopt some functional forms.

As in the closed economy (same notation): $L(i, Y)$, $I_p(r)$ and $C(Y - T)$.

We also have $CA(Q, Y)$. We suppose that, in linear terms, $CA(q, y) = \lambda q - \beta y$. Then, IS and LM are:

$$y = a + \delta(y - t) + (h_0 - \gamma i) + \lambda q - \beta y + g$$

$$m_s - p = ky - \epsilon i$$

The form of the BP depends on what we assume regarding capital mobility. We won’t be explicit about the form of $KA(i - i^*)$.
Under perfect capital mobility the BP curve is horizontal in
\((i, y)\)-space. We can then draw the IS and LM conditions as we did
in the closed economy. **Copeland uses this approach.**

Mankiw takes a different approach: He uses the BP equation in
the IS and LM equations and draws IS and LM curves in
\((q, y)\)-space.

These are totally equivalent. We will follow the first as it allows us
to look at **Imperfect Capital Mobility (i.e. a non-horizontal BP)**
more easily.
Mankiw’s Alternative MF Model

\[i = i^*, \text{ Interest Rate} \]

\[y, \text{ Output} \]

\[q, \text{ Exchange Rate} \]

\[q_0 \]

\[i_0 \]

\[y_0 \]

\[BP \]

\[IS \]

\[LM \]
Floating exchange rate: the nominal exchange rate, \(s \), adjusts in order to maintain equilibrium \((CA = -KA)\). E.g. UK now.

Fixed exchange rate: the nominal exchange rate, \(s \), is fixed, so the central bank has to intervene in foreign exchange markets in order to maintain the parity. E.g. UK in 1990 (ERM).

Obviously, Ireland is “fixed” against, say, Germany, and floating against the US.

We can also vary the degree of capital mobility. E.g. Ireland has no real restrictions, China has capital controls (i.e. immobile).
The exchange rate (q or s) and reserves (R) are the extra variables vs. the closed economy.

Again:

1. the exchange rate may float (be endogenous), with M exogenous, and $R = 0$
2. or be fixed, using R, with M endogenous (more on that later)

The domestic interest rate is exogenous if there is perfect capital mobility ($i = i^*$) but may move if capital is immobile ($i \neq i^*$).
What Exchange Rate Regimes do Countries Use? (Reinhart and Rogoff 2004, QJE)

Floating has risen over time, and so has the choice of extremes ('hollowing out' phenomenon).
We stick to analyzing fix and float cases.

Figure VII
Comparison of Exchange Rate Arrangements According to the IMF Official and Natural Classifications, 1950–2001

Some recent examples of capital controls:
- Chilean “encaje” to stop excessive inflows of capital - required inflows to be deposited at the central bank for a given period of time.

Capital controls are often seen as ‘bad’ as they are like a distorting tax on savings decisions.

Very recently the IMF, and even the Economist, have been suggesting that capital controls are useful in some situations.

We care about this because controls on capital can affect the policy conclusions.
First we’ll try and develop some intuition for the way the MF model works.

Basic strategy:

1. for a given policy, we call what would happen in the closed economy the temporary equilibrium

2. from this we will then move to the permanent (new) equilibrium

For simplicity, we will always start from the position in which the current account and balance of payments are in equilibrium. That is, $CA = KA = 0$.
Consider $\uparrow m^s$. Prices are fixed, so real balances rise. The LM
shifts right, output rises, and the interest rate falls. This
equilibrium is temporary.

As the interest rate falls there is a capital outflow ($KA < 0$).
The exchange rate rises (domestic currency depreciates), boosting
exports, and improving the current account ($CA > 0$).
Output rises causing a deterioration in the current account ($CA < 0$).
But, $BP = CA + KA = 0$ for equilibrium.
Moving to the Permanent Equilibrium

- The change in the exchange rate causes the IS to shift, this raises the interest rate a little and stops some of the capital outflow. The BP also shifts.
- All this stops when the ΔKA covers the ΔCA, which is positive.
- Overall:

1. We start at: $CA = KA = BP = 0$.
2. We end at: $CA > 0$, $KA < 0$, and $BP = 0$.
The IS, LM, and BP all shift as a result of monetary policy. The changes in the IS and BP only occur from changes in the exchange rate, and the BP only moves if capital is not perfectly mobile.
We now consider perfect capital mobility. This is the same as keeping i fixed, as we have $i = i^*$. Now we can also get some clear analytical solutions.

From the LM equation we can see immediately that:

$$\Delta m^s - \Delta p = k \Delta y - \epsilon \Delta i^*$$

$$\Rightarrow \frac{\Delta y}{\Delta m^s} = \frac{1}{k} > 0$$

We don’t need to use the IS to get this. Why? In the closed economy, $\Delta m^s \Rightarrow \Delta i$. This influences the IS via investment. Since $\Delta i^* = \Delta i = 0$ we don’t need to worry about that in this case.
The Exchange Rate

- We also need also to explain what happens to the exchange rate.
- For this we need the IS equation as \(q \) appears there.
- Use the IS and LM to eliminate output. This implies:

\[
\lambda q = [m^s - p + e_i^*] \frac{1}{k} (1 - \delta) - [...]
\]

\[
\Rightarrow \frac{\Delta q}{\Delta m^s} = \frac{1 - \delta}{k\lambda} > 0
\]

- \(\Delta q > 0 \) is a real depreciation. I.e. domestic goods are more competitive.
- **This is the reason why** \(\Delta y / \Delta m^s > 0 \).
- There is ‘expenditure switching’ with sticky prices (as opposed to a liquidity effect).
We say that the LM determines the AD curve in the open economy under floating exchange rates because the IS simple moves to maintain the equilibrium:

\[i, \text{ Interest Rate} \]

\[y, \text{ Output} \]

\[i_0 \]

\[IS(s_0) \]

\[IS(s_1) \]

\[LM(m_0) \]

\[LM(m_1) \]

Expenditure Switching
Summary: Monetary Expansion Under Floating Exchange Rates

- Depreciation of the nominal (and real) value of domestic currency ($\uparrow q$).
- Increase in the level of income ($\uparrow y$) and fall in the interest rate (only if capital is not perfectly mobile).
- As $CA = CA(q, y)$ we see a $\uparrow CA$ even though the change in output and the exchange rate are offsetting.
- No change in the balance of payments (in constant equilibrium when the ex-rate floats), so $\downarrow KA$ (i.e. outflows).
Recall the closed economy. There, $\uparrow g \Rightarrow \uparrow y$ but there is also $\uparrow i \Rightarrow \downarrow I$, which lowers output. **The full change in government spending is not passed through to output due to ‘crowding out’**.

There is a similar effect under floating exchange rates. However:

1. it involves a change in the exchange rate
2. the effect is stronger.
Determining the Change in Output due to a Fiscal Expansion

- Government spending enters the IS curve so:

\[y = a + \delta (y - t) + h_0 - \gamma i^* + \lambda q - \beta y + g \]

\[\Rightarrow (1 - \delta + \beta) \Delta y = \Delta g + \lambda \Delta q \]

- **Now we have to again figure out what happens to the exchange rate.** Following the same logic as before (i.e. eliminate output in IS by the LM),

\[\lambda q = \left[m^s - p + \epsilon i^* \right] \frac{1}{k} (1 - \delta) - [...] \]

\[\Rightarrow \frac{\Delta q}{\Delta g} = - \frac{1}{\lambda} < 0 \]

- Now the value of our currency falls (an appreciation of the exchange rate due to govt. purchases).
The IS can only move temporarily. Why? The BP and LM are unaffected by the change in g (and subsequent change in s).

Essentially, the Δg is entirely funded by overseas borrowing as a $\$1\Delta g$ is equal to $\$1\Delta KA > 0$, which equilibrium requires to be offset by the change in net exports and exchange rate.

Overall, there is a current account deficit (equiv. capital account surplus).
Floating - Fiscal Expansion - Capital Mobility

Diagram: Fiscal Expansion Under Floating Exchange Rates and Perfect Capital Mobility

\[y_0 = y_1 \]

Complete Crowding Out

Note: If capital is not perfectly mobile the effect of crowding out is diminished.
Summary: Fiscal Expansion Under Floating Exchange Rates

- A rise in the real exchange rate and the interest rate (if capital is not perfectly mobile - as considered above).
- A rise in income (if capital is not perfectly mobile) and a deterioration in the current account ($\downarrow CA$) as the income and exchange rate effects are reinforcing.
- No change in the balance of payments (in constant eqm when the ex-rate floats), so $\uparrow KA$ (i.e. capital inflows to cover $CA < 0$).
Recall: $BP = CA + KA - \Delta R$. **With a float we said** $R = 0$.

However, the exchange rate can be fixed ($s = \bar{s}$) by the central bank intervening in the foreign exchange market.

Under a fixed exchange rate regime, the central bank buys and sells domestic currency. The money supply is,

$$M^s \equiv R + D$$

Here, D is domestic credit, and is controlled by the central bank, and R are foreign currency reserves, held by the central bank.
Under a floating exchange rate, the central bank does not use foreign reserves to intervene in currency markets, so say the domestic currency appreciates ($S \downarrow$),

$$\Delta M^s = \Delta D \Rightarrow \Delta R = 0$$

Under a fixed exchange rate, the appreciation of the domestic currency can, for example, be prevented if the central bank sells some domestic currency using its foreign reserves,

$$\Delta M^s = \Delta D + \Delta R \Rightarrow \Delta R > 0$$

Important: ΔD captures Monetary Policy and ΔM^s is endogenous.
If $BP = 0$ how can there be a ‘balance-of-payments surplus’ or ‘deficit’?

Basically, this terminology refers to the CA vs. KA position, which need not equal zero when the exchange rate is fixed.

$$CA(Q, Y) + KA(i - i^*) = \Delta R$$

Example: If the CA deficit $> KA$ surplus \Rightarrow a ‘B-o-P deficit’ where we need to sell reserves ($\Delta R < 0$) to keep $s = \bar{s}$.

A ‘B-o-P crisis’ can occur when $\Delta R < 0$ is very large. However, our BP will always end up at $BP = 0$.

Dudley Cooke (Trinity College Dublin)

Mundell-Fleming Model
Countries that have Maintained Fixed Exchange Rates for Five Years or More

<table>
<thead>
<tr>
<th>Country</th>
<th>Fixed against</th>
<th>Fixed since (± 2% bands)</th>
<th>Fixed since (± 1% bands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1: Major economies with open capital markets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>German mark</td>
<td>Sept. 1979</td>
<td>Jan. 1990</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>Belgian franc</td>
<td>1945</td>
<td>1945</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>German mark</td>
<td>March 1983</td>
<td>Aug. 1992</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>U.S. dollar</td>
<td>March 1985</td>
<td>June 1986</td>
</tr>
<tr>
<td>Thailand</td>
<td>U.S. dollar</td>
<td>July 1990</td>
<td>March 1994</td>
</tr>
</tbody>
</table>

Group 2: Small economies pegging to or using the U.S. dollar			
Bahamas	U.S. dollar	1949	1949
Barbados	U.S. dollar	July 1975	July 1975
Dominica	U.S. dollar	May 1976	May 1976
Grenada	U.S. dollar	May 1976	May 1976
Micronesia	U.S. dollar	1986	1986
Panama	U.S. dollar	1934	1934
Qatar	U.S. dollar	May 1979	Nov. 1979
St. Lucia	U.S. dollar	May 1976	May 1976
St. Vincent & Grenadines	U.S. dollar	May 1976	May 1976
Now \(q = \overline{q} \), so the IS and LM conditions are:

\[
y = a + \delta (y - t) + h_0 - \gamma i^* + g + \lambda \overline{q} - \beta y
\]

\[
\underbrace{R + D - p} = ky - \epsilon i^*
\]

Note: any movement in the balance-of-payments is reflected in the change in reserves. So:

\[
CA(Q, Y) + KA(i - i^*) = \Delta R = B-o-P
\]

and,

\[
CA \neq -KA
\]

but,

\[
BP = 0
\]
Monetary Policy:

- In a fix $\Delta y/\Delta D = 0$. This is a result of the trilemma problem.
- But we will have less reserves. Since reserves are finite this policy could cause the fixed regime to be abandoned (eventually).

Fiscal Policy:

- Now $\Delta y/\Delta g > 0$, whereas with floating exchange rates not much happened.
- This produces a CA deficit financed by capital inflows.

Consider the ‘more interesting’ case of imperfectly mobile capital.
In the short-run, if capital is not completely mobile, the interest rate decreases, income increases, and so the capital and current accounts deteriorate ($CA, KA < 0$). The LM shifts left.

As $\downarrow r$, foreigners want to buy domestic currency, which puts downward pressure on the exchange rate.

The central bank intervenes and sells reserves to stop this ($\Delta R < 0$) and continues until output and the interest rate are back to their previous level. LM shifts back.

In the new equilibrium, the only difference is in the composition of the money stock (i.e. less reserves, $\Delta R < 0$, more domestic credit, $\Delta D > 0$, and $\Delta M^s = 0$)
The basic point is that monetary policy is not effective when the exchange rate is fixed—i.e., we lose monetary autonomy. Above, $D_1 > D_0$, $R_1 < R_0$.

$$LM(D_0, R_0) = LM(D_1, R_1)$$

$$LM(D_1, R_0)$$
As a result of policy (i.e., $↑ g$), the IS shifts right. There is a rise in r which produces capital inflows ($KA > 0$) and a rise in y which causes a current account deficit ($CA < 0$).

As $↑ r$, foreigners buy domestic currency, which puts upward pressure on the exchange rate.

The central bank intervenes and buys reserves ($ΔR > 0$). As $ΔD = 0$, then $ΔM^s > 0$. The LM shifts right.

The interest rate falls a little, and some capital flows out. Output rises, worsening the current account position.
Fiscal policy is less effective (vs. full capital mobility) at changing output as the domestic interest rate has changed. Below; \(D_1 = D_0, \ R_1 < R_0 \) and \(\Delta M^s > 0 \).
We have studied a small open economy:

1. We have looked at the effects of Fiscal and Monetary Policy under Fixed and Floating exchange rates.
2. We have considered the role of capital controls (i.e. imperfect capital mobility) in that context.